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15 Abstract
-

We present dSPRINT:

domain Sequence-based
PRediction of INTeraction
sites, an ensemble of
machine learning classifiers
using a novel stacking
architecture, that predict
binding positions within
protein domains.
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Fig 1: SDPs exemplified in the
Cys,-His, Zinc finger domain. Known'
binding positions are colored in red on
the domain surface?, and pointed by red
arrows on the domain sequence logo’.
They are critical for the DNA-binding
specificity, and are not conserved.

ﬁ Methods: ML stacked architecture
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5 folds cross validation

25 Single Models - 5 for each Ligand
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— (1) M1L5Ft:
1 model, all ligands, w/ features

» (2) M5L1Ft:

All models, 1 ligand, w/ features

Models

(3) M5L5Ff:
All models, all ligands, w/o features

(4) M5L5Ft:
All models, all ligands, w/ features

Select stacking architecture

pipeline overview
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Fig 3: Ligand-combined classifier stacking architecture.
Five base-models are trained for each ligand in 5-fold cross
validation. This results in 25 base-models that are used in
combinations as illustrated in the colorful grid. The chosen
stacking architecture is used as input to a meta-classifier in
the 2nd stacking level.

Per-domain position feature extraction
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6 Results: per-domain evaluation
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Fig 2: dSPRINT workflow for domain-centered per-position prediction. 1 0 160

Domain AUPRC fold improvement over baseline

Fig 5: Performance evaluation on ligand-binding domains.

ﬁ Results: global evaluation T The tab.le represents domain-ligand.pairs with performance
Q exceeding that of the random baselines (the dashed lines)
E— of AUC=0.5 and AUPRC fold ratio=1.
: s G ) Significance
DNA 1 22 67% -
: Z - Systematic identification of ligand-binding residues
on 1 7 s2x would have a farther-reaching applications:
2 . o - » Identify the functional impact of coding variants
peptide ; 2 o . - » Explore the variation in protein interaction network
; s o7 » Characterize mutations’ effect in the context of disease
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Fig 6: Ligand AUPRC fold improvement.
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Table 1: The most reliable
prediction(s) in each binding
domain.




