De-novo predictions of binding positions within protein domains

Anat Etzion-Fuchs, David A. Todd and Mona Singh

Abstract

We present **dSPRINT**: domain Sequence-based PRediction of INTeraction sites, an ensemble of machine learning classifiers using a novel stacking architecture, that predict binding positions within protein domains.

Fig 1: SDPs exemplified in the Cys₂-His₂ Zinc finger domain. Known¹ binding positions are colored in red on the domain surface², and pointed by red arrows on the domain sequence logo³. They are critical for the DNA-binding specificity, and are not conserved.

Fig 2: dSPRINT workflow for domain-centered per-position prediction.

Results: global evaluation

	Number of most reliable predictions chosen per domain	Number of domains with at least one Correct prediction	Fraction of domains With correct predictions
RNA	1	13	62%
	3	16	76%
	5	18	86%
DNA	1	22	67%
	3	27	82%
	5	29	88%
ion	1	47	52%
	3	60	66%
	5	64	70%
peptide	1	29	40%
	3	44	61%
	5	48	67%
small molecule	1	72	55%
	3	96	73%
	5	104	79%

Table 1: The most reliable prediction(s) in each binding domain.

Fig 6: Ligand AUPRC fold improvement. The ratio of the AUPRC to a baseline corresponding to the fraction of binding positions of that ligand at that CV fold.

Methods: ML stacked architecture

Fig 3: Ligand-combined classifier stacking architecture. Five base-models are trained for each ligand in 5-fold cross

validation. This results in 25 base-models that are used in combinations as illustrated in the colorful grid. The chosen stacking architecture is used as input to a meta-classifier in the 2nd stacking level.

Fig 5: Performance evaluation on ligand-binding domains. The table represents domain-ligand pairs with performance exceeding that of the random baselines (the dashed lines) of AUC=0.5 and AUPRC fold ratio=1.

Domain AUPRC fold improvement over baseline

87.8%

58%

Significance

Systematic identification of ligand-binding residues would have a farther-reaching applications:

- Identify the functional impact of coding variants
- Explore the variation in protein interaction network
- Characterize mutations' effect in the context of disease
- Suggest molecular targets for therapeutic intervention

References

0.00

- [1] Wolfe et al. Ann. Rev. Biochem. (2001) [2] Pettersen et al. J. Comput. Chem. (2004)
- [3] Crooks et al. Genome Res. (2004) [4] Kobren and Singh, NAR (2018)

Acknowledgements

We would like to thank Shilpa N. Kobren, and the Singh lab for their helpful insights. Funded by NIH GM076275 (MS), T32 HG003284 (AE), and CA208148 (MS).